skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Yannan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider the existence and spectral stability of nonlinear discrete localized solutions representing light pulses propagating in a twisted multicore optical fiber. By considering an even number,N, of waveguides, we derive asymptotic expressions for solutions in which the bulk of the light intensity is concentrated as soliton‐like pulses confined to a single waveguide. The leading order terms obtained are in very good agreement with results of numerical computations. Furthermore, as in the model without temporal dispersion, when the twist parameter, ϕ, is given by , these standing waves exhibit optical suppression, in which a single waveguide remains unexcited, to leading order. Spectral computations and numerical evolution experiments suggest that these standing wave solutions are stable for values of the coupling parameter less than a critical value, at which point a spectral instability results from the collision of an internal eigenvalue with the eigenvalues at the origin. This critical value has a maximum when . 
    more » « less